metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.228D10, (C4×D5)⋊10D4, (C4×D4)⋊10D5, C20⋊Q8⋊47C2, (C4×D20)⋊26C2, (D4×C20)⋊12C2, C20⋊1(C4○D4), C4⋊2(C4○D20), C4.220(D4×D5), (D5×C42)⋊4C2, C20⋊D4⋊32C2, C20⋊2D4⋊45C2, C4⋊2D20⋊43C2, C4⋊C4.282D10, D10.13(C2×D4), C20.379(C2×D4), D10⋊D4⋊48C2, Dic5⋊1(C4○D4), (C2×D4).212D10, (C2×C10).92C24, Dic5.15(C2×D4), C10.48(C22×D4), (C4×C20).151C22, (C2×C20).492C23, C22⋊C4.109D10, (C22×C4).207D10, C23.93(C22×D5), Dic5.5D4⋊50C2, (D4×C10).255C22, (C2×D20).267C22, C4⋊Dic5.363C22, C5⋊2(C22.26C24), (C22×D5).30C23, C22.117(C23×D5), (C22×C10).162C23, (C22×C20).106C22, (C2×Dic5).213C23, (C4×Dic5).282C22, C23.D5.105C22, D10⋊C4.122C22, (C2×Dic10).246C22, C10.D4.110C22, C2.20(C2×D4×D5), (C4×C5⋊D4)⋊4C2, (C2×C4○D20)⋊6C2, C2.21(D5×C4○D4), C10.40(C2×C4○D4), C2.44(C2×C4○D20), (C2×C4×D5).375C22, (C5×C4⋊C4).325C22, (C2×C4).578(C22×D5), (C2×C5⋊D4).120C22, (C5×C22⋊C4).121C22, SmallGroup(320,1220)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1150 in 310 conjugacy classes, 109 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×10], C22, C22 [×16], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×21], D4 [×20], Q8 [×4], C23 [×2], C23 [×3], D5 [×4], C10 [×3], C10 [×2], C42, C42 [×3], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×3], C22×C4 [×2], C22×C4 [×5], C2×D4, C2×D4 [×9], C2×Q8 [×2], C4○D4 [×8], Dic5 [×4], Dic5 [×3], C20 [×4], C20 [×3], D10 [×2], D10 [×8], C2×C10, C2×C10 [×6], C2×C42, C4×D4, C4×D4 [×3], C4⋊D4 [×4], C4.4D4 [×2], C4⋊1D4, C4⋊Q8, C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], C4×D5 [×8], D20 [×6], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×12], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×2], C22×D5, C22×D5 [×2], C22×C10 [×2], C22.26C24, C4×Dic5 [×3], C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×4], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×3], C2×C4×D5 [×2], C2×D20, C2×D20 [×2], C4○D20 [×8], C2×C5⋊D4 [×6], C22×C20 [×2], D4×C10, D5×C42, C4×D20, D10⋊D4 [×2], Dic5.5D4 [×2], C20⋊Q8, C4⋊2D20, C4×C5⋊D4 [×2], C20⋊2D4, C20⋊D4, D4×C20, C2×C4○D20 [×2], C42.228D10
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22×D4, C2×C4○D4 [×2], C22×D5 [×7], C22.26C24, C4○D20 [×2], D4×D5 [×2], C23×D5, C2×C4○D20, C2×D4×D5, D5×C4○D4, C42.228D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=a-1, bc=cb, bd=db, dcd-1=b2c-1 >
(1 108 33 113)(2 114 34 109)(3 110 35 115)(4 116 36 101)(5 102 37 117)(6 118 38 103)(7 104 39 119)(8 120 40 105)(9 106 31 111)(10 112 32 107)(11 96 46 121)(12 122 47 97)(13 98 48 123)(14 124 49 99)(15 100 50 125)(16 126 41 91)(17 92 42 127)(18 128 43 93)(19 94 44 129)(20 130 45 95)(21 90 135 60)(22 51 136 81)(23 82 137 52)(24 53 138 83)(25 84 139 54)(26 55 140 85)(27 86 131 56)(28 57 132 87)(29 88 133 58)(30 59 134 89)(61 148 73 153)(62 154 74 149)(63 150 75 155)(64 156 76 141)(65 142 77 157)(66 158 78 143)(67 144 79 159)(68 160 80 145)(69 146 71 151)(70 152 72 147)
(1 55 15 61)(2 56 16 62)(3 57 17 63)(4 58 18 64)(5 59 19 65)(6 60 20 66)(7 51 11 67)(8 52 12 68)(9 53 13 69)(10 54 14 70)(21 130 158 118)(22 121 159 119)(23 122 160 120)(24 123 151 111)(25 124 152 112)(26 125 153 113)(27 126 154 114)(28 127 155 115)(29 128 156 116)(30 129 157 117)(31 83 48 71)(32 84 49 72)(33 85 50 73)(34 86 41 74)(35 87 42 75)(36 88 43 76)(37 89 44 77)(38 90 45 78)(39 81 46 79)(40 82 47 80)(91 149 109 131)(92 150 110 132)(93 141 101 133)(94 142 102 134)(95 143 103 135)(96 144 104 136)(97 145 105 137)(98 146 106 138)(99 147 107 139)(100 148 108 140)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 142 15 134)(2 133 16 141)(3 150 17 132)(4 131 18 149)(5 148 19 140)(6 139 20 147)(7 146 11 138)(8 137 12 145)(9 144 13 136)(10 135 14 143)(21 49 158 32)(22 31 159 48)(23 47 160 40)(24 39 151 46)(25 45 152 38)(26 37 153 44)(27 43 154 36)(28 35 155 42)(29 41 156 34)(30 33 157 50)(51 106 67 98)(52 97 68 105)(53 104 69 96)(54 95 70 103)(55 102 61 94)(56 93 62 101)(57 110 63 92)(58 91 64 109)(59 108 65 100)(60 99 66 107)(71 121 83 119)(72 118 84 130)(73 129 85 117)(74 116 86 128)(75 127 87 115)(76 114 88 126)(77 125 89 113)(78 112 90 124)(79 123 81 111)(80 120 82 122)
G:=sub<Sym(160)| (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,96,46,121)(12,122,47,97)(13,98,48,123)(14,124,49,99)(15,100,50,125)(16,126,41,91)(17,92,42,127)(18,128,43,93)(19,94,44,129)(20,130,45,95)(21,90,135,60)(22,51,136,81)(23,82,137,52)(24,53,138,83)(25,84,139,54)(26,55,140,85)(27,86,131,56)(28,57,132,87)(29,88,133,58)(30,59,134,89)(61,148,73,153)(62,154,74,149)(63,150,75,155)(64,156,76,141)(65,142,77,157)(66,158,78,143)(67,144,79,159)(68,160,80,145)(69,146,71,151)(70,152,72,147), (1,55,15,61)(2,56,16,62)(3,57,17,63)(4,58,18,64)(5,59,19,65)(6,60,20,66)(7,51,11,67)(8,52,12,68)(9,53,13,69)(10,54,14,70)(21,130,158,118)(22,121,159,119)(23,122,160,120)(24,123,151,111)(25,124,152,112)(26,125,153,113)(27,126,154,114)(28,127,155,115)(29,128,156,116)(30,129,157,117)(31,83,48,71)(32,84,49,72)(33,85,50,73)(34,86,41,74)(35,87,42,75)(36,88,43,76)(37,89,44,77)(38,90,45,78)(39,81,46,79)(40,82,47,80)(91,149,109,131)(92,150,110,132)(93,141,101,133)(94,142,102,134)(95,143,103,135)(96,144,104,136)(97,145,105,137)(98,146,106,138)(99,147,107,139)(100,148,108,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,15,134)(2,133,16,141)(3,150,17,132)(4,131,18,149)(5,148,19,140)(6,139,20,147)(7,146,11,138)(8,137,12,145)(9,144,13,136)(10,135,14,143)(21,49,158,32)(22,31,159,48)(23,47,160,40)(24,39,151,46)(25,45,152,38)(26,37,153,44)(27,43,154,36)(28,35,155,42)(29,41,156,34)(30,33,157,50)(51,106,67,98)(52,97,68,105)(53,104,69,96)(54,95,70,103)(55,102,61,94)(56,93,62,101)(57,110,63,92)(58,91,64,109)(59,108,65,100)(60,99,66,107)(71,121,83,119)(72,118,84,130)(73,129,85,117)(74,116,86,128)(75,127,87,115)(76,114,88,126)(77,125,89,113)(78,112,90,124)(79,123,81,111)(80,120,82,122)>;
G:=Group( (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,96,46,121)(12,122,47,97)(13,98,48,123)(14,124,49,99)(15,100,50,125)(16,126,41,91)(17,92,42,127)(18,128,43,93)(19,94,44,129)(20,130,45,95)(21,90,135,60)(22,51,136,81)(23,82,137,52)(24,53,138,83)(25,84,139,54)(26,55,140,85)(27,86,131,56)(28,57,132,87)(29,88,133,58)(30,59,134,89)(61,148,73,153)(62,154,74,149)(63,150,75,155)(64,156,76,141)(65,142,77,157)(66,158,78,143)(67,144,79,159)(68,160,80,145)(69,146,71,151)(70,152,72,147), (1,55,15,61)(2,56,16,62)(3,57,17,63)(4,58,18,64)(5,59,19,65)(6,60,20,66)(7,51,11,67)(8,52,12,68)(9,53,13,69)(10,54,14,70)(21,130,158,118)(22,121,159,119)(23,122,160,120)(24,123,151,111)(25,124,152,112)(26,125,153,113)(27,126,154,114)(28,127,155,115)(29,128,156,116)(30,129,157,117)(31,83,48,71)(32,84,49,72)(33,85,50,73)(34,86,41,74)(35,87,42,75)(36,88,43,76)(37,89,44,77)(38,90,45,78)(39,81,46,79)(40,82,47,80)(91,149,109,131)(92,150,110,132)(93,141,101,133)(94,142,102,134)(95,143,103,135)(96,144,104,136)(97,145,105,137)(98,146,106,138)(99,147,107,139)(100,148,108,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,142,15,134)(2,133,16,141)(3,150,17,132)(4,131,18,149)(5,148,19,140)(6,139,20,147)(7,146,11,138)(8,137,12,145)(9,144,13,136)(10,135,14,143)(21,49,158,32)(22,31,159,48)(23,47,160,40)(24,39,151,46)(25,45,152,38)(26,37,153,44)(27,43,154,36)(28,35,155,42)(29,41,156,34)(30,33,157,50)(51,106,67,98)(52,97,68,105)(53,104,69,96)(54,95,70,103)(55,102,61,94)(56,93,62,101)(57,110,63,92)(58,91,64,109)(59,108,65,100)(60,99,66,107)(71,121,83,119)(72,118,84,130)(73,129,85,117)(74,116,86,128)(75,127,87,115)(76,114,88,126)(77,125,89,113)(78,112,90,124)(79,123,81,111)(80,120,82,122) );
G=PermutationGroup([(1,108,33,113),(2,114,34,109),(3,110,35,115),(4,116,36,101),(5,102,37,117),(6,118,38,103),(7,104,39,119),(8,120,40,105),(9,106,31,111),(10,112,32,107),(11,96,46,121),(12,122,47,97),(13,98,48,123),(14,124,49,99),(15,100,50,125),(16,126,41,91),(17,92,42,127),(18,128,43,93),(19,94,44,129),(20,130,45,95),(21,90,135,60),(22,51,136,81),(23,82,137,52),(24,53,138,83),(25,84,139,54),(26,55,140,85),(27,86,131,56),(28,57,132,87),(29,88,133,58),(30,59,134,89),(61,148,73,153),(62,154,74,149),(63,150,75,155),(64,156,76,141),(65,142,77,157),(66,158,78,143),(67,144,79,159),(68,160,80,145),(69,146,71,151),(70,152,72,147)], [(1,55,15,61),(2,56,16,62),(3,57,17,63),(4,58,18,64),(5,59,19,65),(6,60,20,66),(7,51,11,67),(8,52,12,68),(9,53,13,69),(10,54,14,70),(21,130,158,118),(22,121,159,119),(23,122,160,120),(24,123,151,111),(25,124,152,112),(26,125,153,113),(27,126,154,114),(28,127,155,115),(29,128,156,116),(30,129,157,117),(31,83,48,71),(32,84,49,72),(33,85,50,73),(34,86,41,74),(35,87,42,75),(36,88,43,76),(37,89,44,77),(38,90,45,78),(39,81,46,79),(40,82,47,80),(91,149,109,131),(92,150,110,132),(93,141,101,133),(94,142,102,134),(95,143,103,135),(96,144,104,136),(97,145,105,137),(98,146,106,138),(99,147,107,139),(100,148,108,140)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,142,15,134),(2,133,16,141),(3,150,17,132),(4,131,18,149),(5,148,19,140),(6,139,20,147),(7,146,11,138),(8,137,12,145),(9,144,13,136),(10,135,14,143),(21,49,158,32),(22,31,159,48),(23,47,160,40),(24,39,151,46),(25,45,152,38),(26,37,153,44),(27,43,154,36),(28,35,155,42),(29,41,156,34),(30,33,157,50),(51,106,67,98),(52,97,68,105),(53,104,69,96),(54,95,70,103),(55,102,61,94),(56,93,62,101),(57,110,63,92),(58,91,64,109),(59,108,65,100),(60,99,66,107),(71,121,83,119),(72,118,84,130),(73,129,85,117),(74,116,86,128),(75,127,87,115),(76,114,88,126),(77,125,89,113),(78,112,90,124),(79,123,81,111),(80,120,82,122)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 34 | 0 | 0 |
| 0 | 0 | 6 | 35 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 6 | 34 | 0 | 0 |
| 0 | 0 | 5 | 35 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 0 | 0 | 0 | 0 | 40 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,6,0,0,0,0,34,35,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[9,0,0,0,0,0,0,32,0,0,0,0,0,0,6,5,0,0,0,0,34,35,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;
68 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 20 | 20 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D10 | C4○D20 | D4×D5 | D5×C4○D4 |
| kernel | C42.228D10 | D5×C42 | C4×D20 | D10⋊D4 | Dic5.5D4 | C20⋊Q8 | C4⋊2D20 | C4×C5⋊D4 | C20⋊2D4 | C20⋊D4 | D4×C20 | C2×C4○D20 | C4×D5 | C4×D4 | Dic5 | C20 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C4 | C2 |
| # reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 16 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{228}D_{10} % in TeX
G:=Group("C4^2.228D10"); // GroupNames label
G:=SmallGroup(320,1220);
// by ID
G=gap.SmallGroup(320,1220);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,675,570,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=b^2*c^-1>;
// generators/relations